Second Order PDEs with Dirichlet White Noise Boundary Condition

Abstract : In this paper we study the Poisson and heat equations on bounded and unbounded domains with smooth boundary with random Dirichlet boundary conditions. The main novelty of this work is a convenient framework for the analysis of such equations excited by the white in time and/or space noise on the boundary. Our approach allows us to show the existence and uniqueness of weak solutions in the space of distributions. Then we prove that the solutions can be identified as smooth functions inside the domain, and finally the rate of their blow up at the boundary is estimated. A large class of noises including Wiener and fractional Wiener space time white noise, homogeneous noise and Lévy noise is considered.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Francesco Russo <>
Soumis le : jeudi 23 mai 2013 - 08:26:28
Dernière modification le : lundi 15 janvier 2018 - 12:20:02
Document(s) archivé(s) le : samedi 24 août 2013 - 03:20:09


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00825120, version 1
  • ARXIV : 1305.5324



Zdzislaw Brzezniak, Ben Goldys, Szymon Peszat, Francesco Russo. Second Order PDEs with Dirichlet White Noise Boundary Condition. 2013. 〈hal-00825120〉



Consultations de la notice


Téléchargements de fichiers