Pareto-Based Multiobjective AI Planning

Mostepha Redouane Khouadjia 1 Marc Schoenauer 1, 2 Vincent Vidal 3 Johann Dréo 4 Pierre Savéant 4
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Real-world problems generally involve several antagonistic objectives, like quality and cost for design problems, or makespan and cost for planning problems. The only approaches to multiobjective AI Planning rely on metrics, that can incorporate several objectives in some linear combinations, and metric sensitive planners, that are able to give different plans for different metrics, and hence to eventually approximate the Pareto front of the multiobjective problem, i.e. the set of optimal trade-offs between the antagonistic objectives. Divide-and-Evolve (DaE) is an evolutionary planner that embeds a classical planner and feeds it with a sequence of subproblems of the problem at hand. Like all Evolutionary Algorithms, DaE can be turned into a Pareto-based multiobjective solver, even though using an embedded planner that is not metric sensitive. The Pareto-based multiobjective planner MO-DaE thus avoids the drawbacks of the aggregation method. Furthermore, using YAHSP as the embedded planner, it outperforms in many cases the metric-based approach using LPG metric sensitive planner, as witnessed by experimental results on original multiobjective benchmarks built upon IPC-2011 domains.
Type de document :
Communication dans un congrès
Francesca Rossi. IJCAI 2013, Aug 2013, Beijing, China. IJCAI/AAAI, pp.2321-2327, 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00835003
Contributeur : Marc Schoenauer <>
Soumis le : mercredi 19 juin 2013 - 11:13:08
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : vendredi 20 septembre 2013 - 04:05:51

Fichier

567final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00835003, version 2

Collections

Citation

Mostepha Redouane Khouadjia, Marc Schoenauer, Vincent Vidal, Johann Dréo, Pierre Savéant. Pareto-Based Multiobjective AI Planning. Francesca Rossi. IJCAI 2013, Aug 2013, Beijing, China. IJCAI/AAAI, pp.2321-2327, 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 〈hal-00835003v2〉

Partager

Métriques

Consultations de la notice

384

Téléchargements de fichiers

384