Reconstruction of solutions to the Helmholtz equation from punctual measurements

Abstract : We analyze the sampling of solutions to the Helmholtz equation (e.g. sound fields in the harmonic regime) using a least-squares method based on approximations of the solutions by sums of Fourier-Bessel functions or plane waves. This method compares favorably to others such as Orthogonal Matching Pursuit with a Fourier dictionary. We show that using a significant proportion of samples on the border of the domain of interest improves the stability of the reconstruction, and that using cross-validation to estimate the model order yields good reconstruction results.
Type de document :
Communication dans un congrès
SampTA - Sampling Theory and Applications 2013, Jul 2013, Bremen, Germany. 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00842798
Contributeur : Gilles Chardon <>
Soumis le : mardi 9 juillet 2013 - 14:33:21
Dernière modification le : mercredi 12 octobre 2016 - 01:20:41

Fichiers

sampta_rev.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00842798, version 1

Collections

Citation

Gilles Chardon, Albert Cohen, Laurent Daudet. Reconstruction of solutions to the Helmholtz equation from punctual measurements. SampTA - Sampling Theory and Applications 2013, Jul 2013, Bremen, Germany. 2013. <hal-00842798>

Partager

Métriques

Consultations de
la notice

352

Téléchargements du document

212