Skip to Main content Skip to Navigation
New interface
Journal articles

Detecting parametric objects in large scenes by Monte Carlo sampling

Yannick Verdie 1 Florent Lafarge 1 
1 TITANE - Geometric Modeling of 3D Environments
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Point processes constitute a natural extension of Markov Random Fields (MRF), designed to handle parametric objects. They have shown efficiency and competitiveness for tackling object extraction problems in vision. Simulating these stochastic models is however a difficult task. The performances of the existing samplers are limited in terms of computation time and convergence stability, especially on large scenes. We propose a new sampling procedure based on a Monte Carlo formalism. Our algorithm exploits the Markovian property of point processes to perform the sampling in parallel. This procedure is embedded into a data-driven mechanism so that the points are distributed in the scene in function of spatial information extracted from the input data. The performances of the sampler are analyzed through a set of experiments on various object detection problems from large scenes, including comparisons to the existing algorithms. The sampler is also tested as optimization algorithm for MRF-based labeling problems.
Document type :
Journal articles
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download
Contributor : Florent Lafarge Connect in order to contact the contributor
Submitted on : Wednesday, July 10, 2013 - 10:47:27 AM
Last modification on : Saturday, June 25, 2022 - 11:10:36 PM
Long-term archiving on: : Friday, October 11, 2013 - 4:21:46 AM


Files produced by the author(s)




Yannick Verdie, Florent Lafarge. Detecting parametric objects in large scenes by Monte Carlo sampling. International Journal of Computer Vision, 2014, 106 (1), pp.57-75. ⟨10.1007/s11263-013-0641-0⟩. ⟨hal-00843022⟩



Record views


Files downloads