Detecting parametric objects in large scenes by Monte Carlo sampling

Yannick Verdie 1 Florent Lafarge 1
1 TITANE - Geometric Modeling of 3D Environments
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Point processes constitute a natural extension of Markov Random Fields (MRF), designed to handle parametric objects. They have shown efficiency and competitiveness for tackling object extraction problems in vision. Simulating these stochastic models is however a difficult task. The performances of the existing samplers are limited in terms of computation time and convergence stability, especially on large scenes. We propose a new sampling procedure based on a Monte Carlo formalism. Our algorithm exploits the Markovian property of point processes to perform the sampling in parallel. This procedure is embedded into a data-driven mechanism so that the points are distributed in the scene in function of spatial information extracted from the input data. The performances of the sampler are analyzed through a set of experiments on various object detection problems from large scenes, including comparisons to the existing algorithms. The sampler is also tested as optimization algorithm for MRF-based labeling problems.
Document type :
Journal articles
Complete list of metadatas

Cited literature [36 references]  Display  Hide  Download


https://hal.inria.fr/hal-00843022
Contributor : Florent Lafarge <>
Submitted on : Wednesday, July 10, 2013 - 10:47:27 AM
Last modification on : Thursday, January 11, 2018 - 4:17:42 PM
Long-term archiving on : Friday, October 11, 2013 - 4:21:46 AM

Files

IJCV.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Yannick Verdie, Florent Lafarge. Detecting parametric objects in large scenes by Monte Carlo sampling. International Journal of Computer Vision, Springer Verlag, 2014, 106 (1), pp.57-75. ⟨10.1007/s11263-013-0641-0⟩. ⟨hal-00843022⟩

Share

Metrics

Record views

515

Files downloads

5213