Detecting metastable states of dynamical systems by recurrence-based symbolic dynamics

Peter Beim Graben 1 Axel Hutt 2
2 NEUROSYS - Analysis and modeling of neural systems by a system neuroscience approach
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : We propose an algorithm for the detection of recurrence domains of complex dynamical sys- tems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots (RP). In phase space, RPs yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this parti- tion by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.
Type de document :
Article dans une revue
Physical Review Letters, American Physical Society, 2013, 110, pp.154101. <10.1103/PhysRevLett.110.154101>


https://hal.inria.fr/hal-00847164
Contributeur : Axel Hutt <>
Soumis le : lundi 22 juillet 2013 - 18:17:42
Dernière modification le : mercredi 28 septembre 2016 - 11:01:08
Document(s) archivé(s) le : mercredi 23 octobre 2013 - 05:30:09

Fichier

RecuParti.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Peter Beim Graben, Axel Hutt. Detecting metastable states of dynamical systems by recurrence-based symbolic dynamics. Physical Review Letters, American Physical Society, 2013, 110, pp.154101. <10.1103/PhysRevLett.110.154101>. <hal-00847164>

Exporter

Partager

Métriques

Consultations de
la notice

272

Téléchargements du document

161