SCALe-invariant Integral Surfaces

Cédric Zanni 1, * Adrien Bernhardt 1 Maxime Quiblier 1 Marie-Paule Cani 1
* Auteur correspondant
1 IMAGINE - Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Extraction of skeletons from solid shapes has attracted quite a lot of attention, but less attention was paid so far to the reverse operation: generating smooth surfaces from skeletons and local radius information. Convolution surfaces, i.e. implicit surfaces generated by integrating a smoothing kernel along a skeleton, were developed to do so. However, they failed to reconstruct prescribed radii and were unable to model large shapes with fine details. This work introduces SCALe-invariant Integral Surfaces (SCALIS), a new paradigm for implicit modeling from skeleton graphs. Similarly to convolution surfaces, our new surfaces still smoothly blend when field contributions from new skeleton parts are added. However, in contrast with convolution surfaces, blending properties are scale invariant. This brings three major benefits: the radius of the surface around a skeleton can be explicitly controlled, shapes generated in blending regions are self-similar regardless of the scale of the model, and thin shape components are not excessively smoothed out when blended into larger ones.
Type de document :
Article dans une revue
Computer Graphics Forum, Wiley, 2013, 32 (8), pp.219-232. 〈〉. 〈10.1111/cgf.12199〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger
Contributeur : Cédric Zanni <>
Soumis le : dimanche 29 septembre 2013 - 23:44:49
Dernière modification le : mardi 15 mai 2018 - 22:26:02
Document(s) archivé(s) le : vendredi 7 avril 2017 - 04:16:16




Cédric Zanni, Adrien Bernhardt, Maxime Quiblier, Marie-Paule Cani. SCALe-invariant Integral Surfaces. Computer Graphics Forum, Wiley, 2013, 32 (8), pp.219-232. 〈〉. 〈10.1111/cgf.12199〉. 〈hal-00863523v2〉



Consultations de la notice


Téléchargements de fichiers