Runge-Kutta Residual Distribution Schemes

Abstract : We are concerned with the solution of time-dependent nonlinear hyperbolic partial differential equations. We investigate the combination of residual distribution methods with a consistent mass matrix (discretisation in space) and a Runge-Kutta-type time stepping (discretisation in time). The introduced nonlinear blending procedure allows us to retain the explicit character of the time stepping procedure. The resulting methods are second order accurate provided that both spatial and temporal approximations are. The proposed approach results in a global linear system that has to be solved at each time-step. An efficient way of solving this system is also proposed. To test and validate this new framework, we perform extensive numerical experiments on a wide variety of classical problems.
Type de document :
Rapport
[Research Report] RR-8370, INRIA. 2013
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00865154
Contributeur : Mario Ricchiuto <>
Soumis le : mardi 24 septembre 2013 - 08:46:46
Dernière modification le : jeudi 11 janvier 2018 - 06:22:35
Document(s) archivé(s) le : mercredi 25 décembre 2013 - 04:32:05

Fichier

RR8370.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00865154, version 1

Collections

Citation

Andrzej Warzynski, Matthew Hubbard, Mario Ricchiuto. Runge-Kutta Residual Distribution Schemes. [Research Report] RR-8370, INRIA. 2013. 〈hal-00865154〉

Partager

Métriques

Consultations de la notice

437

Téléchargements de fichiers

141