On the behavior of upwind schemes in the low Mach number limit. IV: \P0\ approximation on triangular and tetrahedral cells.

Abstract : Finite Volume upwind schemes for the Euler equations in the low Mach number regime face a problem of lack of convergence toward the solutions of the incompressible system. However, if applied to cell centered triangular grid, this problem disappears and convergence toward the incompressible solution is recovered. Extending the work of [3] that prove this result for regular triangular grid, we give here a general proof of this fact for arbitrary unstructured meshes. In addition, we also show that this result is equally valid for unstructured three dimensional tetrahedral meshes.
Liste complète des métadonnées

https://hal.inria.fr/hal-00871718
Contributeur : Herve Guillard <>
Soumis le : jeudi 10 octobre 2013 - 11:36:12
Dernière modification le : vendredi 12 janvier 2018 - 01:51:52

Identifiants

Collections

Citation

Hervé Guillard. On the behavior of upwind schemes in the low Mach number limit. IV: \P0\ approximation on triangular and tetrahedral cells.. Computers and Fluids, Elsevier, 2009, 38 (10), pp.1969-1972. 〈10.1016/j.compfluid.2009.06.003〉. 〈hal-00871718〉

Partager

Métriques

Consultations de la notice

128