Analysis of an algebraic Petrov-Galerkin smoothed aggregation multigrid method

Abstract : We give a convergence estimate for a Petrov-Galerkin Algebraic Multigrid method. In this method, the prolongations are defined using the concept of smoothed aggregation while the restrictions are simple aggregation operators. The analysis is carried out by showing that these methods can be interpreted as variational Ritz-Galerkin ones using modified transfer and smoothing operators. The estimate depends only on a weak approximation property for the aggregation operators. For a scalar second order elliptic problem using linear elements, this assumption is shown to hold using simple geometrical arguments on the aggregates.
Liste complète des métadonnées

https://hal.inria.fr/hal-00871721
Contributeur : Herve Guillard <>
Soumis le : jeudi 10 octobre 2013 - 11:36:17
Dernière modification le : vendredi 12 janvier 2018 - 01:51:32

Identifiants

Collections

Citation

Hervé Guillard, Aleš Janka, Petr Vaněk. Analysis of an algebraic Petrov-Galerkin smoothed aggregation multigrid method. Applied Numerical Mathematics, Elsevier, 2008, 58 (12), pp.1861-1874. 〈10.1016/j.apnum.2007.11.008〉. 〈hal-00871721〉

Partager

Métriques

Consultations de la notice

168