Fault estimation in a class of first order nonlinear systems

Abstract : Reformulated principle of fault estimation design for one class of first order continuous-time nonlinear system is treated in this paper, where a neural network is regarded as model-free fault approximator. The problem addressed is presented as approach based on sliding mode methodology with combination of radial basis function neural network to design robust nonlinear fault estimation. The method utilizes Lyapunov function and the steepest descent rule to guarantee the convergence of the estimation error asymptotically. Simulation results show the feasibility of the proposed approach.
Type de document :
Communication dans un congrès
IEEE 9th International Symposium on Applied Machine Intelligence and Informatics, Jan 2011, Smolenice, Slovakia. IEEE, pp.317-321, 2011, 〈10.1109/SAMI.2011.5738897〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00905238
Contributeur : Robert Fonod <>
Soumis le : dimanche 17 novembre 2013 - 22:06:18
Dernière modification le : lundi 21 mars 2016 - 17:30:53
Document(s) archivé(s) le : mardi 18 février 2014 - 04:35:23

Fichier

Sami2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Robert Fonod, Daniel Gontkovic. Fault estimation in a class of first order nonlinear systems. IEEE 9th International Symposium on Applied Machine Intelligence and Informatics, Jan 2011, Smolenice, Slovakia. IEEE, pp.317-321, 2011, 〈10.1109/SAMI.2011.5738897〉. 〈hal-00905238〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

54