GPU accelerated maximum cardinality matching algorithms for bipartite graphs

Abstract : We design, implement, and evaluate GPU-based algorithms for the maximum cardinality matching problem in bipartite graphs. Such algorithms have a variety of applications in computer science, scientific computing, bioinformatics, and other areas. To the best of our knowledge, ours is the first study which focuses on the GPU implementation of the maximum cardinality matching algorithms. We compare the proposed algorithms with serial and multicore implementations from the literature on a large set of real-life problems where in majority of the cases one of our GPU-accelerated algorithms is demonstrated to be faster than both the sequential and multicore implementations.
Type de document :
Communication dans un congrès
Felix Wolf and Bernd Mohr and Dieter an Mey. Euro-Par 2013, Aug 2013, Aachen, Germany. Springer, pp.850-861, 2013, 〈10.1007/978-3-642-40047-6_84〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00923449
Contributeur : Equipe Roma <>
Soumis le : jeudi 2 janvier 2014 - 19:46:51
Dernière modification le : vendredi 20 avril 2018 - 15:44:26
Document(s) archivé(s) le : samedi 8 avril 2017 - 10:35:51

Fichier

matchingGPU.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mehmet Deveci, Kamer Kaya, Bora Uçar, Umit Catalyurek. GPU accelerated maximum cardinality matching algorithms for bipartite graphs. Felix Wolf and Bernd Mohr and Dieter an Mey. Euro-Par 2013, Aug 2013, Aachen, Germany. Springer, pp.850-861, 2013, 〈10.1007/978-3-642-40047-6_84〉. 〈hal-00923449〉

Partager

Métriques

Consultations de la notice

384

Téléchargements de fichiers

470