Approximated Lax Pairs for the Reduced Order Integration of Nonlinear Evolution Equations

Jean-Frédéric Gerbeau 1 Damiano Lombardi 1
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : A reduced-order model algorithm, called ALP, is proposed to solve nonlinear evolution partial differential equations. It is based on approximations of generalized Lax pairs. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the basis on which the solution is searched for evolves in time according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive front or wave propagation. Another difference with other reduced-order methods is that it is not based on an off-line / on-line strategy. Numerical examples are shown for the linear advection, KdV and FKPP equations, in one and two dimensions.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2014, 265, pp.246-269. 〈10.1016/j.jcp.2014.01.047〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00933172
Contributeur : Jean-Frédéric Gerbeau <>
Soumis le : lundi 20 janvier 2014 - 10:04:48
Dernière modification le : mardi 17 avril 2018 - 11:27:20
Document(s) archivé(s) le : mardi 22 avril 2014 - 11:50:49

Fichiers

RR-8454.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Frédéric Gerbeau, Damiano Lombardi. Approximated Lax Pairs for the Reduced Order Integration of Nonlinear Evolution Equations. Journal of Computational Physics, Elsevier, 2014, 265, pp.246-269. 〈10.1016/j.jcp.2014.01.047〉. 〈hal-00933172〉

Partager

Métriques

Consultations de la notice

541

Téléchargements de fichiers

312