Continuous and Piecewise Affine Lyapunov Functions using the Yoshizawa Construction

Abstract : We present a novel numerical technique for the computation of a Lyapunov function for nonlinear systems with an asymptotically stable equilibrium point. Our proposed approach constructs a continuous piecewise affine (CPA) function given a suitable partition of the state space, called a triangulation, and values at the vertices of the triangulation. The vertex values are obtained from a Lyapunov function in a classical converse Lyapunov theorem and verification that the obtained CPA function is a Lyapunov function is shown to be equivalent to verification of several simple inequalities. Furthermore, by refining the triangulation, we show that it is always possible to construct a CPA Lyapunov function. Numerical examples are presented demonstrating the effectiveness of the proposed method.
Type de document :
Communication dans un congrès
American Control Conference (ACC), 2014, 2014, Portland, United States. pp.548 - 553, 2014, Proceedings of the American Control Conference (ACC), 2014. 〈10.1109/ACC.2014.6858660〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00944393
Contributeur : Estelle Bouzat <>
Soumis le : lundi 10 février 2014 - 15:30:29
Dernière modification le : mardi 22 mars 2016 - 01:22:24
Document(s) archivé(s) le : lundi 12 mai 2014 - 13:01:49

Fichier

HKL13-Preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sigurđur Freyr Hafstein, Christopher M. Kellett, Huijuan Li. Continuous and Piecewise Affine Lyapunov Functions using the Yoshizawa Construction. American Control Conference (ACC), 2014, 2014, Portland, United States. pp.548 - 553, 2014, Proceedings of the American Control Conference (ACC), 2014. 〈10.1109/ACC.2014.6858660〉. 〈hal-00944393〉

Partager

Métriques

Consultations de la notice

157

Téléchargements de fichiers

137