A numerical method for nonconvex multi-objective optimal control problems

Abstract : A numerical method is proposed for constructing an approximation of the Pareto front of nonconvex multi-objective optimal control problems. First, a suitable scalarization technique is employed for the multi-objective optimal control problem. Then by using a grid of scalarization parameter values, i.e., a grid of weights, a sequence of single-objective optimal control problems are solved to obtain points which are spread over the Pareto front. The technique is illustrated on problems involving tumor anti-angiogenesis and a fed-batch bioreactor, which exhibit bang-bang, singular and boundary types of optimal control. We illustrate that the Bolza form, the traditional scalarization in optimal control, fails to represent all the compromise, i.e., Pareto optimal, solutions.
Type de document :
Article dans une revue
Computational Optimization and Applications, Springer Verlag, 2013, 〈10.1007/s10589-013-9603-2〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00944399
Contributeur : Estelle Bouzat <>
Soumis le : lundi 10 février 2014 - 15:33:54
Dernière modification le : lundi 21 mars 2016 - 11:31:14

Identifiants

Collections

Citation

Yalçin Kaya, Helmut Maurer. A numerical method for nonconvex multi-objective optimal control problems. Computational Optimization and Applications, Springer Verlag, 2013, 〈10.1007/s10589-013-9603-2〉. 〈hal-00944399〉

Partager

Métriques

Consultations de la notice

246