Autonomous Visual Navigation and Laser-based Moving Obstacle Avoidance

Andrea Cherubini 1 Fabien Spindler 2 François Chaumette 2
1 IDH - Interactive Digital Humans
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
2 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Moving obstacle avoidance is a fundamental re- quirement for any robot operating in real environments, where pedestrians, bicycles and cars are present. In this paper, we propose and validate a framework for avoiding moving obstacles during visual navigation with a wheeled mobile robot. Visual navigation consists of following a path, represented as an ordered set of key images, which have been acquired by an on-board camera in a teaching phase. While following such path, our robot is able to avoid static as well as moving obstacles, which were not present during teaching, and which are sensed by an on- board lidar. The proposed approach takes explicitly into account obstacle velocities, estimated using an appropriate Kalman-based observer. The velocities are then used to predict the obstacle positions within a tentacle-based approach. Finally, our approach is validated in a series of real outdoor experiments, showing that when the obstacle velocities are considered, the robot behaviour is safer, smoother, and faster than when it is not.
Type de document :
Article dans une revue
IEEE Transactions on Intelligent Transportation Systems, IEEE, 2014
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00954360
Contributeur : Eric Marchand <>
Soumis le : samedi 1 mars 2014 - 18:03:40
Dernière modification le : jeudi 24 mai 2018 - 15:59:24
Document(s) archivé(s) le : vendredi 30 mai 2014 - 15:51:46

Fichier

2014_its_cherubini.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00954360, version 1

Citation

Andrea Cherubini, Fabien Spindler, François Chaumette. Autonomous Visual Navigation and Laser-based Moving Obstacle Avoidance. IEEE Transactions on Intelligent Transportation Systems, IEEE, 2014. 〈hal-00954360〉

Partager

Métriques

Consultations de la notice

838

Téléchargements de fichiers

866