On the Structure of Valiant's Complexity Classes

Abstract : In Valiant developed an algebraic analogue of the theory of NP-completeness for computations of polynomials over a field. We further develop this theory in the spirit of structural complexity and obtain analogues of well-known results by Baker, Gill, and Solovay, Ladner, and Schöning.\par We show that if Valiant's hypothesis is true, then there is a p-definable family, which is neither p-computable nor \textitVNP-complete. More generally, we define the posets of p-degrees and c-degrees of p-definable families and prove that any countable poset can be embedded in either of them, provided Valiant's hypothesis is true. Moreover, we establish the existence of minimal pairs for \textitVP in \textitVNP.\par Over finite fields, we give a \emphspecific example of a family of polynomials which is neither \textitVNP-complete nor p-computable, provided the polynomial hierarchy does not collapse.\par We define relativized complexity classes VP^h and VNP^h and construct complete families in these classes. Moreover, we prove that there is a p-family h satisfying VP^h = VNP^h.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 1999, 3 (3), pp.73-94
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 16:47:49
Dernière modification le : mercredi 29 novembre 2017 - 10:26:23
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:01:55


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00958928, version 1



Peter Bürgisser. On the Structure of Valiant's Complexity Classes. Discrete Mathematics and Theoretical Computer Science, DMTCS, 1999, 3 (3), pp.73-94. 〈hal-00958928〉



Consultations de la notice


Téléchargements de fichiers