On a hierarchy of Boolean functions hard to compute in constant depth

Abstract : Any attempt to find connections between mathematical properties and complexity has a strong relevance to the field of Complexity Theory. This is due to the lack of mathematical techniques to prove lower bounds for general models of computation.\par This work represents a step in this direction: we define a combinatorial property that makes Boolean functions ''\emphhard'' to compute in constant depth and show how the harmonic analysis on the hypercube can be applied to derive new lower bounds on the size complexity of previously unclassified Boolean functions.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.79-90
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00958948
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 16:51:22
Dernière modification le : mercredi 29 novembre 2017 - 10:26:24
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:03:18

Fichier

dm040201.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00958948, version 1

Collections

Citation

Anna Bernasconi. On a hierarchy of Boolean functions hard to compute in constant depth. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.79-90. 〈hal-00958948〉

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

216