A new two-variable generalization of the chromatic polynomial

Abstract : We present a two-variable polynomial, which simultaneously generalizes the chromatic polynomial, the independence polynomial, and the matching polynomial of a graph. This new polynomial satisfies both an edge decomposition formula and a vertex decomposition formula. We establish two general expressions for this new polynomial: one in terms of the broken circuit complex and one in terms of the lattice of forbidden colorings. We show that the new polynomial may be considered as a specialization of Stanley's chromatic symmetric function. We finally give explicit expressions for the generalized chromatic polynomial of complete graphs, complete bipartite graphs, paths, and cycles, and show that it can be computed in polynomial time for trees and graphs of restricted pathwidth.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2003, 6 (1), pp.69-90
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00958990
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 13 mars 2014 - 16:59:10
Dernière modification le : mercredi 29 novembre 2017 - 10:26:22
Document(s) archivé(s) le : vendredi 13 juin 2014 - 12:09:00

Fichier

dm060106.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00958990, version 1

Collections

Citation

Klaus Dohmen, André Poenitz, Peter Tittmann. A new two-variable generalization of the chromatic polynomial. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2003, 6 (1), pp.69-90. 〈hal-00958990〉

Partager

Métriques

Consultations de la notice

96

Téléchargements de fichiers

234