Exponential bounds and tails for additive random recursive sequences

Abstract : Exponential bounds and tail estimates are derived for additive random recursive sequences, which typically arise as functionals of recursive structures, of random trees or in recursive algorithms. In particular they arise as parameters of divide and conquer type algorithms. We derive tail bounds from estimates of the Laplace transforms and of the moment sequences. For the proof we use some classical exponential bounds and some variants of the induction method. The paper generalizes results of Rösler (% \citeyearNPRoesler:91, % \citeyearNPRoesler:92) and % \citeNNeininger:05 on subgaussian tails to more general classes of additive random recursive sequences. It also gives sufficient conditions for tail bounds of the form \exp(-a t^p) which are based on a characterization of \citeNKasahara:78.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.333--352
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00964242
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : lundi 24 mars 2014 - 11:13:39
Dernière modification le : mercredi 29 novembre 2017 - 10:26:18
Document(s) archivé(s) le : mardi 24 juin 2014 - 11:05:39

Fichier

662-2657-1-PB.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00964242, version 1

Collections

Citation

Ludger Rüschendorf, Eva-Maria Schopp. Exponential bounds and tails for additive random recursive sequences. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.333--352. 〈hal-00964242〉

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

136