The resolving number of a graph Delia

Abstract : We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 3 (3), pp.155-166
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00966384
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 mars 2014 - 15:16:34
Dernière modification le : jeudi 7 septembre 2017 - 01:03:41
Document(s) archivé(s) le : jeudi 26 juin 2014 - 11:32:31

Fichier

2505-8469-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00966384, version 1

Collections

Citation

Delia Garijo, Antonio González, Alberto Márquez. The resolving number of a graph Delia. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 3 (3), pp.155-166. 〈hal-00966384〉

Partager

Métriques

Consultations de la notice

256

Téléchargements de fichiers

197