Asymptotic behaviour of a non-commutative rational series with a nonnegative linear representation

Abstract : We analyse the asymptotic behaviour in the mean of a non-commutative rational series, which originates from differential cryptanalysis, using tools from probability theory, and from analytic number theory. We derive a Fourier representation of a first-order summation function obtained by interpreting this rational series as a non-classical rational sequence via the octal numeration system. The method is applicable to a wide class of sequences rational with respect to a numeration system essentially under the condition that they admit a linear representation with nonnegative coefficients.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.247--272
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00966501
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 mars 2014 - 16:59:16
Dernière modification le : mardi 17 avril 2018 - 11:34:32
Document(s) archivé(s) le : jeudi 26 juin 2014 - 11:55:53

Fichier

478-2568-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00966501, version 1

Collections

Citation

Philippe Dumas, Helger Lipmaa, Johan Wallén. Asymptotic behaviour of a non-commutative rational series with a nonnegative linear representation. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.247--272. 〈hal-00966501〉

Partager

Métriques

Consultations de la notice

100

Téléchargements de fichiers

213