On the tileability of polygons with colored dominoes

Abstract : We consider questions concerning the tileability of orthogonal polygons with colored dominoes. A colored domino is a rotatable 2 × 1 rectangle that is partitioned into two unit squares, which are called faces, each of which is assigned a color. In a colored domino tiling of an orthogonal polygon P, a set of dominoes completely covers P such that no dominoes overlap and so that adjacent faces have the same color. We demonstrated that for simple layout polygons that can be tiled with colored dominoes, two colors are always sufficient. We also show that for tileable non-simple layout polygons, four colors are always sufficient and sometimes necessary. We describe an O(n) time algorithm for computing a colored domino tiling of a simple orthogonal polygon, if such a tiling exists, where n is the number of dominoes used in the tiling. We also show that deciding whether or not a non-simple orthogonal polygon can be tiled with colored dominoes is NP-complete.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.107--126
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00966510
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 mars 2014 - 16:59:28
Dernière modification le : mercredi 29 novembre 2017 - 10:26:18
Document(s) archivé(s) le : jeudi 26 juin 2014 - 11:56:39

Fichier

547-2453-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00966510, version 1

Collections

Citation

Chris Worman, Boting Yang. On the tileability of polygons with colored dominoes. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.107--126. 〈hal-00966510〉

Partager

Métriques

Consultations de la notice

67

Téléchargements de fichiers

137