Addition and multiplication of beta-expansions in generalized Tribonacci base

Abstract : We study properties of β-numeration systems, where β > 1 is the real root of the polynomial x3 - mx2 - x - 1, m ∈ ℕ, m ≥ 1. We consider arithmetic operations on the set of β-integers, i.e., on the set of numbers whose greedy expansion in base β has no fractional part. We show that the number of fractional digits arising under addition of β-integers is at most 5 for m ≥ 3 and 6 for m = 2, whereas under multiplication it is at most 6 for all m ≥ 2. We thus generalize the results known for Tribonacci numeration system, i.e., for m = 1. We summarize the combinatorial properties of infinite words naturally defined by β-integers. We point out the differences between the structure of β-integers in cases m = 1 and m ≥ 2.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (2), pp.73--88
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00966530
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 mars 2014 - 17:01:37
Dernière modification le : mercredi 29 novembre 2017 - 10:26:22
Document(s) archivé(s) le : jeudi 26 juin 2014 - 12:00:34

Fichier

650-2298-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00966530, version 1

Collections

Citation

Petr Ambrož, Zuzana Masáková, Edita Pelantová. Addition and multiplication of beta-expansions in generalized Tribonacci base. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (2), pp.73--88. 〈hal-00966530〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

373