A mathematically derived number of resamplings for noisy optimization

Jialin Liu 1, 2 David L. Saint-Pierre 1, 3 Olivier Teytaud 1, 2
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
3 Montefiore institute
LRI - Laboratoire de Recherche en Informatique
Abstract : In Noisy Optimization, one of the most common way to deal with noise is through resampling. In this paper, we compare various resampling rules applied to Evolution Strategy (ES). The goal is to provide a conclusive answer for resampling rules in simple settings. We use a variant of ES as our main algorithm: Self-Adaptive (μ/μ,λ)-Evolution Strategy. We focus our attention on local noisy optimization. In other words, we are interested in situation where reducing the noise is more important than avoiding local minima. We study different sampling rules on the noisy sphere function and compare them experimentally. We conclude that there exists parameter-free formulas that provide adequate resampling rules.
Type de document :
Communication dans un congrès
Companion - Genetic and Evolutionary Computation Conference (GECCO 2014), Jul 2014, Vancouver, Canada. ACM, pp.61-62, 2014
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00979442
Contributeur : Jialin Liu <>
Soumis le : mercredi 16 avril 2014 - 11:18:01
Dernière modification le : jeudi 5 avril 2018 - 12:30:24
Document(s) archivé(s) le : lundi 10 avril 2017 - 14:06:47

Fichier

bignoise2xp_short.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00979442, version 1

Collections

Citation

Jialin Liu, David L. Saint-Pierre, Olivier Teytaud. A mathematically derived number of resamplings for noisy optimization. Companion - Genetic and Evolutionary Computation Conference (GECCO 2014), Jul 2014, Vancouver, Canada. ACM, pp.61-62, 2014. 〈hal-00979442〉

Partager

Métriques

Consultations de la notice

444

Téléchargements de fichiers

226