Computing periods of rational integrals

Pierre Lairez 1, *
* Auteur correspondant
Abstract : A period of a rational integral is the result of integrating, with respect to one or several variables, a rational function over a closed path. This work focuses particularly on periods depending on a parameter: in this case the period under consideration satisfies a linear differential equation, the Picard-Fuchs equation. I give a reduction algorithm that extends the Griffiths-Dwork reduction and apply it to the computation of Picard-Fuchs equations. The resulting algorithm is elementary and has been successfully applied to problems that were previously out of reach.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2016, 85, pp.1719-1752. <http://www.ams.org/journals/mcom/2016-85-300/S0025-5718-2015-03054-3/>. <10.1090/mcom/3054>
Liste complète des métadonnées


https://hal.inria.fr/hal-00981114
Contributeur : Pierre Lairez <>
Soumis le : lundi 31 août 2015 - 16:38:38
Dernière modification le : samedi 18 février 2017 - 01:14:51
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:44:41

Fichiers

arxiv.article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierre Lairez. Computing periods of rational integrals. Mathematics of Computation, American Mathematical Society, 2016, 85, pp.1719-1752. <http://www.ams.org/journals/mcom/2016-85-300/S0025-5718-2015-03054-3/>. <10.1090/mcom/3054>. <hal-00981114v3>

Partager

Métriques

Consultations de
la notice

138

Téléchargements du document

76