Linear Time Recognition Algorithms and Structure Theorems for Bipartite Tolerance Graphs and Bipartite Probe Interval Graphs

Abstract : A graph is a probe interval graph if its vertices can be partitioned into probes and nonprobes with an interval associated to each vertex so that vertices are adjacent if and only if their corresponding intervals intersect and at least one of them is a probe. A graph G = (V, E) is a tolerance graph if each vertex v is an element of V can be associated to an interval I(v) of the real line and a positive real number t(v) such that uv is an element of E if and only if vertical bar I(u) boolean AND I(v)vertical bar >= min \t(u), t(v)\. In this paper we present O(vertical bar V vertical bar + vertical bar E vertical bar) recognition algorithms for both bipartite probe interval graphs and bipartite tolerance graphs. We also give a new structural characterization for each class which follows from the algorithms.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, 12 (5), pp.63-82
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990447
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:37:19
Dernière modification le : mercredi 29 novembre 2017 - 10:26:23
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:18:12

Fichier

1327-5746-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990447, version 1

Collections

Citation

David E. Brown, Arthur H. Busch, Garth Isaak. Linear Time Recognition Algorithms and Structure Theorems for Bipartite Tolerance Graphs and Bipartite Probe Interval Graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, 12 (5), pp.63-82. 〈hal-00990447〉

Partager

Métriques

Consultations de la notice

60

Téléchargements de fichiers

313