Recursions and divisibility properties for combinatorial Macdonald polynomials

Abstract : For each integer partition mu, let e (F) over tilde (mu)(q; t) be the coefficient of x(1) ... x(n) in the modified Macdonald polynomial (H) over tilde (mu). The polynomial (F) over tilde (mu)(q; t) can be regarded as the Hilbert series of a certain doubly-graded S(n)-module M(mu), or as a q, t-analogue of n! based on permutation statistics inv(mu) and maj(mu) that generalize the classical inversion and major index statistics. This paper uses the combinatorial definition of (F) over tilde (mu) to prove some recursions characterizing these polynomials, and other related ones, when mu is a two-column shape. Our result provides a complement to recent work of Garsia and Haglund, who proved a different recursion for two-column shapes by representation-theoretical methods. For all mu, we show that e (F) over tilde (mu)(q, t) is divisible by certain q-factorials and t-factorials depending on mu. We use our recursion and related tools to explain some of these factors bijectively. Finally, we present fermionic formulas that express e (F) over tilde ((2n)) (q, t) as a sum of q, t-analogues of n!2(n) indexed by perfect matchings.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 1 (1), pp.21--42
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990490
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:39:23
Dernière modification le : jeudi 7 septembre 2017 - 01:03:37
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:11:38

Fichier

1487-5888-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990490, version 1

Collections

Citation

Nicholas A. Loehr, Elizabeth Niese. Recursions and divisibility properties for combinatorial Macdonald polynomials. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 1 (1), pp.21--42. 〈hal-00990490〉

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

153