A Combinatorial Approach to the Tanny Sequence

Abstract : The Tanny sequence T (i) is a sequence defined recursively as T(i) = T(i - 1 - T(i - 1)) + T(i - 2 - T(i - 2)), T(0) = T(1) = T(2) = 1. In the first part of this paper we give combinatorial proofs of all the results regarding T(i), that Tanny proved in his paper "A well-behaved cousin of the Hofstadter sequence", Discrete Mathematics, 105(1992), pp. 227-239, using algebraic means. In most cases our proofs turn out to be simpler and shorter. Moreover, they give a "visual" appeal to the theory developed by Tanny. We also generalize most of Tanny's results. In the second part of the paper we present many new results regarding T(i) and prove them combinatorially. Given two integers n and k, it is interesting to know if T(n) = k or not. In this paper we characterize such numbers.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 2 (2), pp.97--108
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990501
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:39:38
Dernière modification le : jeudi 7 septembre 2017 - 01:03:36
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:15:18

Fichier

1320-6372-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990501, version 1

Collections

Citation

Anita Das. A Combinatorial Approach to the Tanny Sequence. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 2 (2), pp.97--108. 〈hal-00990501〉

Partager

Métriques

Consultations de la notice

59

Téléchargements de fichiers

111