Avoidance colourings for small nonclassical Ramsey numbers

Abstract : The irredundant Ramsey number s - s(m, n) [upper domination Ramsey number u - u(m, n), respectively] is the smallest natural number s [u, respectively] such that in any red-blue edge colouring (R, B) of the complete graph of order s [u, respectively], it holds that IR(B) \textgreater= m or IR(R) \textgreater= n [Gamma (B) \textgreater= m or Gamma(R) \textgreater= n, respectively], where Gamma and IR denote respectively the upper domination number and the irredundance number of a graph. Furthermore, the mixed irredundant Ramsey number t = t(m, n) [mixed domination Ramsey number v = v(m, n), respectively] is the smallest natural number t [v, respectively] such that in any red-blue edge colouring (R, B) of the complete graph of order t [v, respectively], it holds that IR(B) \textgreater= m or beta(R) \textgreater= n [Gamma(B) \textgreater= m or beta(R) \textgreater= n, respectively], where beta denotes the independent domination number of a graph. These four classes of non-classical Ramsey numbers have previously been studied in the literature. In this paper we introduce a new Ramsey number w = w(m, n), called the irredundant-domination Ramsey number, which is the smallest natural number w such that in any red-blue edge colouring (R, B) of the complete graph of order w, it holds that IR(B) \textgreater= m or Gamma(R) \textgreater= n. A computer search is employed to determine complete sets of avoidance colourings of small order for these five classes of nonclassical Ramsey numbers. In the process the fifteen previously unknown Ramsey numbers t(4, 4) = 14, t(6, 3) = 17, u(4, 4) = 13, v(4, 3) = 8, v(4, 4) = 14, v(5, 3) = 13, v(6, 3) = 17, w(3, 3) = 6, w(3, 4) = w(4, 3) = 8, w(4, 4) = 13, w(3, 5) = w(5, 3) = 12 and w(3, 6) = w(6, 3) = 15 are established.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 2 (2), pp.81--96
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990505
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:39:44
Dernière modification le : jeudi 7 septembre 2017 - 01:03:36
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:23:41

Fichier

1514-6370-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990505, version 1

Collections

Citation

Alewyn Petrus Burger, Jan H. Vuuren. Avoidance colourings for small nonclassical Ramsey numbers. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 2 (2), pp.81--96. 〈hal-00990505〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

144