Vertex-colouring edge-weightings with two edge weights

Abstract : An edge-weighting vertex colouring of a graph is an edge-weight assignment such that the accumulated weights at the vertices yields a proper vertex colouring. If such an assignment from a set S exists, we say the graph is S-weight colourable. It is conjectured that every graph with no isolated edge is \1, 2, 3\-weight colourable. We explore the problem of classifying those graphs which are \1, 2\ -weight colourable. We establish that a number of classes of graphs are S -weight colourable for much more general sets S of size 2. In particular, we show that any graph having only cycles of length 0 mod 4 is S -weight colourable for most sets S of size 2. As a consequence, we classify the minimal graphs which are not \1, 2\-weight colourable with respect to subgraph containment. We also demonstrate techniques for constructing graphs which are not \1, 2\-weight colourable.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2012, Vol. 14 no. 1 (1), pp.1-20
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990567
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 16:19:40
Dernière modification le : jeudi 7 septembre 2017 - 01:03:37
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:42:49

Fichier

1690-6729-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990567, version 1

Collections

Citation

Mahdad Khatirinejad, Reza Naserasr, Mike Newman, Ben Seamone, Brett Stevens. Vertex-colouring edge-weightings with two edge weights. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2012, Vol. 14 no. 1 (1), pp.1-20. 〈hal-00990567〉

Partager

Métriques

Consultations de la notice

445

Téléchargements de fichiers

322