Asymptotic results for silent elimination

Abstract : Following the model of Bondesson, Nilsson, and Wikstrand, we consider randomly filled urns, where the probability of falling into urn i is the geometric probability (1-q)qi-1. Assuming n independent random entries, and a fixed parameter k, the interest is in the following parameters: Let T be the smallest index, such that urn T is non-empty, but the following k are empty, then: XT= number of balls in urn T, ST= number of balls in urns with index larger than T, and finally T itself..
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity, 12 (2), pp.185-196
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00994591
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 21 mai 2014 - 17:16:43
Dernière modification le : mercredi 29 novembre 2017 - 10:26:18
Document(s) archivé(s) le : jeudi 21 août 2014 - 12:07:08

Fichier

1336-5005-2-PB.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00994591, version 1

Collections

Citation

Guy Louchard, Helmut Prodinger. Asymptotic results for silent elimination. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity, 12 (2), pp.185-196. 〈hal-00994591〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

184