Persistently damped transport on a network of circles

Yacine Chitour 1 Guilherme Mazanti 2, 3 Mario Sigalotti 2, 3
3 GECO - Geometric Control Design
Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : In this paper we address the exponential stability of a system of transport equations with intermittent damping on a network of $N \geq 2$ circles intersecting at a single point $O$. The $N$ equations are coupled through a linear mixing of their values at $O$, described by a matrix $M$. The activity of the intermittent damping is determined by persistently exciting signals, all belonging to a fixed class. The main result is that, under suitable hypotheses on $M$ and on the rationality of the ratios between the lengths of the circles, such a system is exponentially stable, uniformly with respect to the persistently exciting signals. The proof relies on an explicit formula for the solutions of this system, which allows one to track down the effects of the intermittent damping.
Type de document :
Article dans une revue
Transactions of the American Mathematical Society, American Mathematical Society, 2017, 369 (6), pp.3841-3881. 〈10.1090/tran/6778〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00999743
Contributeur : Guilherme Mazanti <>
Soumis le : lundi 23 novembre 2015 - 10:38:59
Dernière modification le : jeudi 12 avril 2018 - 01:49:40
Document(s) archivé(s) le : vendredi 28 avril 2017 - 18:30:56

Fichier

Transport.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yacine Chitour, Guilherme Mazanti, Mario Sigalotti. Persistently damped transport on a network of circles. Transactions of the American Mathematical Society, American Mathematical Society, 2017, 369 (6), pp.3841-3881. 〈10.1090/tran/6778〉. 〈hal-00999743〉

Partager

Métriques

Consultations de la notice

869

Téléchargements de fichiers

98