Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction

Abstract : We present a novel numerical technique for the computation of a Lyapunov function for nonlinear systems with an asymptotically stable equilibrium point. Our proposed approach constructs a continuous piecewise affine (CPA) function given a suitable partition of the state space, called a triangulation, and values at the vertices of the triangulation. The vertex values are obtained from a Lyapunov function in a classical converse Lyapunov theorem and verification that the obtained CPA function is a Lyapunov function is shown to be equivalent to verification of several simple inequalities. Furthermore, by refining the triangulation, we show that it is always possible to construct a CPA Lyapunov function. Numerical examples are presented demonstrating the effectiveness of the proposed method.
Type de document :
Document associé à des manifestations scientifiques
NETCO 2014 - New Trends in Optimal Control, Jun 2014, Tours, France
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01025882
Contributeur : Hasnaa Zidani <>
Soumis le : vendredi 18 juillet 2014 - 15:49:38
Dernière modification le : lundi 21 mars 2016 - 17:37:30
Document(s) archivé(s) le : lundi 24 novembre 2014 - 20:01:23

Fichier

Li-NETCO2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01025882, version 1

Collections

Citation

Huijuan Li, Sigurđur Hafstein, Christopher M. Kellett. Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction. NETCO 2014 - New Trends in Optimal Control, Jun 2014, Tours, France. 〈hal-01025882〉

Partager

Métriques

Consultations de la notice

99

Téléchargements de fichiers

44