Sensitivity relations for the Mayer problem of optimal control

Abstract : In optimal control, sensitivity relations associate to a minimizing trajectory x(.) a pair of mappings formed by the Hamiltonian and the dual arc, that are selections from the generalized gradient of the value function at (t, x(t)) for each time t. In this paper we prove such sensitivity relations for the Mayer optimal control problem with dynamics described by a differential inclusion. If the associated Hamiltonian is semiconvex with respect to the state variable, then we show that sensitivity relations hold true for any dual arc associated to an optimal solution, instead of more traditional statements about the existence of a dual arc satisfying such relations.
Type de document :
Communication dans un congrès
53rd IEEE Conference on Decision and Control, Dec 2014, Los Angeles, United States. 2014
Liste complète des métadonnées

https://hal.inria.fr/hal-01052487
Contributeur : Helene Frankowska <>
Soumis le : dimanche 27 juillet 2014 - 00:20:07
Dernière modification le : jeudi 11 janvier 2018 - 06:12:14

Identifiants

  • HAL Id : hal-01052487, version 1

Collections

Citation

Piermarco Cannarsa, Hélène Frankowska, Teresa Scarinci. Sensitivity relations for the Mayer problem of optimal control. 53rd IEEE Conference on Decision and Control, Dec 2014, Los Angeles, United States. 2014. 〈hal-01052487〉

Partager

Métriques

Consultations de la notice

167