Variable selection in model-based clustering and discriminant analysis with a regularization approach

Abstract : Several methods for variable selection have been proposed in model-based clustering and classification. These make use of backward or forward procedures to define the roles of the variables. Unfortunately, such stepwise procedures are slow and the resulting algorithms inefficient when analyzing large data sets with many variables. In this paper, we propose an alternative regularization approach for variable selection in model-based clustering and classification. In our approach the variables are first ranked using a lasso-like procedure in order to avoid slow stepwise algorithms. Thus, the variable selection methodology of Maugis et al. (Comput Stat Data Anal 53:3872–3882, 2009b) can be efficiently applied to high-dimensional data sets.
Type de document :
Article dans une revue
Advances in Data Analysis and Classification, Springer Verlag, 2018, 〈10.1007/s11634-018-0322-5〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01053784
Contributeur : Mohammed Amechtoh Sedki <>
Soumis le : mardi 28 novembre 2017 - 14:03:03
Dernière modification le : mercredi 23 mai 2018 - 17:58:04

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gilles Celeux, Cathy Maugis-Rabusseau, Mohammed Sedki. Variable selection in model-based clustering and discriminant analysis with a regularization approach . Advances in Data Analysis and Classification, Springer Verlag, 2018, 〈10.1007/s11634-018-0322-5〉. 〈hal-01053784v2〉

Partager

Métriques

Consultations de la notice

178

Téléchargements de fichiers

109