Combinatorial optimization in networks with Shared Risk Link Groups

David Coudert 1 Stéphane Pérennes 1 Hervé Rivano 2 Marie-Emilie Voge 3
1 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
2 URBANET - Réseaux capillaires urbains
CITI - CITI Centre of Innovation in Telecommunications and Integration of services, Inria Grenoble - Rhône-Alpes
Abstract : The notion of Shared Risk Link Groups (SRLG) captures survivability issues when a set of links of a network may fail simultaneously. The theory of survivable network design relies on basic combinatorial objects that are rather easy to compute in the classical graph models: shortest paths, minimum cuts, or pairs of disjoint paths. In the SRLG context, the optimization criterion for these objects is no longer the number of edges they use, but the number of SRLGs involved. Unfortunately, computing these combinatorial objects is NP-hard and hard to approximate with this objective in general. Nevertheless some objects can be computed in polynomial time when the SRLGs satisfy certain structural properties of locality which correspond to practical ones, namely the star property (all links affected by a given SRLG are incident to a unique node) and the span 1 property (the links affected by a given SRLG form a connected component of the network). The star property is defined in a multi-colored model where a link can be affected by several SRLGs while the span property is defined only in a mono-colored model where a link can be affected by at most one SRLG. In this paper, we extend these notions to characterize new cases in which these optimization problems can be solved in polynomial time. We also investigate the computational impact of the transformation from the multi-colored model to the mono-colored one. Experimental results are presented to validate the proposed algorithms and principles.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2016, Vol. 18, no 3, pp.25
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01053859
Contributeur : David Coudert <>
Soumis le : jeudi 28 avril 2016 - 14:45:49
Dernière modification le : mercredi 11 mai 2016 - 01:02:45
Document(s) archivé(s) le : mardi 15 novembre 2016 - 16:19:05

Fichier

dmtcs-1420.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01053859, version 4

Citation

David Coudert, Stéphane Pérennes, Hervé Rivano, Marie-Emilie Voge. Combinatorial optimization in networks with Shared Risk Link Groups. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2016, Vol. 18, no 3, pp.25. 〈hal-01053859v4〉

Partager

Métriques

Consultations de
la notice

630

Téléchargements du document

458