Hastings-Metropolis algorithm on Markov chains for small-probability estimation

Abstract : Shielding studies in neutron transport, with Monte Carlo codes, yield challenging problems of small-probability estimation. The particularity of these studies is that the small probability to estimate is formulated in terms of the distribution of a Markov chain, instead of that of a random vector in more classical cases. Thus, it is not straightforward to adapt classical statistical methods, for estimating small probabilities involving random vectors, to these neutron-transport problems. A recent interacting-particle method for small-probability estimation, relying on the Hastings-Metropolis algorithm, is presented. It is shown how to adapt the Hastings-Metropolis algorithm when dealing with Markov chains. A convergence result is also shown. Then, the practical implementation of the resulting method for small-probability estimation is treated in details, for a Monte Carlo shielding study. Finally, it is shown, for this study, that the proposed interacting-particle method considerably outperforms a simple Monte Carlo method, when the probability to estimate is small.
Type de document :
Article dans une revue
ESAIM: Proceedings, EDP Sciences, 2015, 48, pp.33. 〈10.1051/proc/201448013〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01058939
Contributeur : Lionel Lenôtre <>
Soumis le : jeudi 26 mars 2015 - 10:47:15
Dernière modification le : samedi 16 juin 2018 - 23:28:02
Document(s) archivé(s) le : lundi 17 avril 2017 - 23:04:03

Fichier

proc144813.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

François Bachoc, Achref Bachouch, Lionel Lenôtre. Hastings-Metropolis algorithm on Markov chains for small-probability estimation. ESAIM: Proceedings, EDP Sciences, 2015, 48, pp.33. 〈10.1051/proc/201448013〉. 〈hal-01058939v5〉

Partager

Métriques

Consultations de la notice

560

Téléchargements de fichiers

216