Sparse Modeling for Image and Vision Processing

Julien Mairal 1 Francis Bach 2, 3 Jean Ponce 4, 2
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
4 WILLOW - Models of visual object recognition and scene understanding
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.
Type de document :
Ouvrage (y compris édition critique et traduction)
now publishers, 8 (2-3), pp.216, 2014, Foundations and Trends in Computer Graphics and Vision, <10.1561/9781680830095>. <http://www.nowpublishers.com/>
Liste complète des métadonnées

https://hal.inria.fr/hal-01081139
Contributeur : Julien Mairal <>
Soumis le : samedi 6 décembre 2014 - 14:57:23
Dernière modification le : jeudi 29 septembre 2016 - 01:22:36
Document(s) archivé(s) le : lundi 9 mars 2015 - 06:07:22

Fichier

review_sparse_arxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Julien Mairal, Francis Bach, Jean Ponce. Sparse Modeling for Image and Vision Processing. now publishers, 8 (2-3), pp.216, 2014, Foundations and Trends in Computer Graphics and Vision, <10.1561/9781680830095>. <http://www.nowpublishers.com/>. <hal-01081139v2>

Partager

Métriques

Consultations de
la notice

742

Téléchargements du document

1159