Pseudo-Random Number Generation on GP-GPU - Inria - Institut national de recherche en sciences et technologies du numérique
Communication Dans Un Congrès Année : 2011

Pseudo-Random Number Generation on GP-GPU

Résumé

Random number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. Particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. It results in a situation where potential biases can be combined to performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to correctly parallelize random streams, in the context of GPU-enabled stochastic simulations.
Fichier principal
Vignette du fichier
pads2011_frree.pdf (1.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01083185 , version 1 (22-12-2014)

Licence

Identifiants

Citer

Jonathan Passerat-Palmbach, Claude Mazel, David R.C. Hill. Pseudo-Random Number Generation on GP-GPU. IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed Simulation, Jun 2011, Nice, France. ⟨10.1109/PADS.2011.5936751⟩. ⟨hal-01083185⟩
167 Consultations
952 Téléchargements

Altmetric

Partager

More