Pseudo-Random Number Generation on GP-GPU

Abstract : Random number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. Particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. It results in a situation where potential biases can be combined to performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to correctly parallelize random streams, in the context of GPU-enabled stochastic simulations.
Type de document :
Communication dans un congrès
IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed Simulation, Jun 2011, Nice, France. 2011, 〈10.1109/PADS.2011.5936751〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01083185
Contributeur : Jonathan Passerat-Palmbach <>
Soumis le : lundi 22 décembre 2014 - 19:15:22
Dernière modification le : jeudi 11 janvier 2018 - 06:16:31
Document(s) archivé(s) le : vendredi 14 avril 2017 - 16:23:47

Fichiers

pads2011_frree.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jonathan Passerat-Palmbach, Claude Mazel, David Hill. Pseudo-Random Number Generation on GP-GPU. IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed Simulation, Jun 2011, Nice, France. 2011, 〈10.1109/PADS.2011.5936751〉. 〈hal-01083185〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

400