Weighted Least Squares Based Detail Enhanced Exposure Fusion

Harbinder Singh 1, * Vinay Kumar 1 Sunil Bhooshan 1
* Auteur correspondant
Abstract : Many recent computational photography techniques play a significant role to avoid limitation of standard digital cameras to handle wide dynamic range of the real-world scenes, containing brightly and poorly illuminated areas. In many of these techniques, it is often desirable to fuse details from images captured at different exposure settings, while avoiding visual artifacts. In this paper we propose a novel technique for exposure fusion in which Weighted Least Squares (WLS) optimization framework is utilized for weight map refinement. Computationally simple texture features (i.e. detail layer extracted with the help of edge preserving filter) and color saturation measure are preferred for quickly generating weight maps to control the contribution from an input set of multi-exposure images. Instead of employing intermediate High Dynamic Range (HDR) reconstruction and tone mapping steps, well-exposed fused image is generated for displaying on conventional display devices. A further advantage of the present technique is that it is well suited for multi-focus image 2 fusion. Simulation results are compared with a number of existing single resolution and multi-resolution techniques to show the benefits of the proposed scheme for variety of cases.
Type de document :
Article dans une revue
ISRN Signal Processing, Hindawi, 2014, pp.18. 〈10.1049/el:20020212〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01098118
Contributeur : Vinay Kumar <>
Soumis le : vendredi 22 mai 2015 - 07:50:32
Dernière modification le : mardi 17 avril 2018 - 11:52:01
Document(s) archivé(s) le : lundi 14 septembre 2015 - 17:47:48

Fichiers

Manuscript.pdf
Fichiers produits par l'(les) auteur(s)

  •  498762.pdf Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Harbinder Singh, Vinay Kumar, Sunil Bhooshan. Weighted Least Squares Based Detail Enhanced Exposure Fusion. ISRN Signal Processing, Hindawi, 2014, pp.18. 〈10.1049/el:20020212〉. 〈hal-01098118〉

Partager

Métriques

Consultations de la notice

114

Téléchargements de fichiers

546