Dobrushin ergodicity coefficient for Markov operators on cones

Stéphane Gaubert 1, 2 Zheng Qu 3
2 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : Doeblin and Dobrushin characterized the contraction rate of Markov operators with respect the total variation norm. We generalize their results by giving an explicit formula for the contraction rate of a Markov operator over a cone in terms of pairs of extreme points with disjoint support in a set of abstract probability measures. By duality, we derive a characterization of the contraction rate of consensus dynamics over a cone with respect to Hopf’s oscillation seminorm (the infinitesimal seminorm associated with Hilbert’s projective metric). We apply these results to Kraus maps (noncommutative Markov chains, representing quantum channels), and characterize the ultimate contraction of the map in terms of the existence of a rank one matrix in a certain subspace.
Type de document :
Article dans une revue
Integral Equations and Operator Theory, Springer Verlag, 2015, 1 (81), pp.127-150. 〈10.1007/s00020-014-2193-2〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01099179
Contributeur : Stephane Gaubert <>
Soumis le : mercredi 31 décembre 2014 - 17:58:18
Dernière modification le : jeudi 10 mai 2018 - 02:04:05

Lien texte intégral

Identifiants

Citation

Stéphane Gaubert, Zheng Qu. Dobrushin ergodicity coefficient for Markov operators on cones. Integral Equations and Operator Theory, Springer Verlag, 2015, 1 (81), pp.127-150. 〈10.1007/s00020-014-2193-2〉. 〈hal-01099179〉

Partager

Métriques

Consultations de la notice

592