Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU

Abstract : Random number generation is a key element of stochastic simulations. It has been widely studied for sequential applications purposes, enabling us to reliably use pseudo-random numbers in this case. Unfortunately, we cannot be so enthusiastic when dealing with parallel stochastic simulations. Many applications still neglect random stream parallelization, leading to potentially biased results. In particular parallel execution platforms, such as Graphics Processing Units (GPUs), add their constraints to those of Pseudo-Random Number Generators (PRNGs) used in parallel. This results in a situation where potential biases can be combined with performance drops when parallelization of random streams has not been carried out rigorously. Here, we propose criteria guiding the design of good GPU-enabled PRNGs. We enhance our comments with a study of the techniques aiming to parallelize random streams correctly, in the context of GPU-enabled stochastic simulations.
Type de document :
Article dans une revue
Journal of Simulation, Palgrave Macmillan, 2012, pp.141 - 151. 〈10.1057/jos.2012.8〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01099194
Contributeur : Jonathan Passerat-Palmbach <>
Soumis le : mercredi 31 décembre 2014 - 21:32:18
Dernière modification le : jeudi 11 janvier 2018 - 06:16:31
Document(s) archivé(s) le : mercredi 1 avril 2015 - 10:36:11

Fichiers

jos2012_frree.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jonathan Passerat-Palmbach, Claude Mazel, David Hill. Pseudo-Random Streams for Distributed and Parallel Stochastic Simulations on GP-GPU. Journal of Simulation, Palgrave Macmillan, 2012, pp.141 - 151. 〈10.1057/jos.2012.8〉. 〈hal-01099194〉

Partager

Métriques

Consultations de la notice

234

Téléchargements de fichiers

182