Conditional Quantile Estimation based on Optimal Quantization: from Theory to Practice

Abstract : Small-sample properties of a nonparametric estimator of conditional quantiles based on optimal quantization, that was recently introduced (J. Statist. Plann. Inference, 156, 14–30, 2015), are investigated. More precisely, (i) the practical implementation of this estimator is discussed (by proposing in particular a method to properly select the corresponding smoothing parameter, namely the number of quantizers) and (ii) its finite- sample performances are compared to those of classical competitors. Monte Carlo studies reveal that the quantization-based estimator competes well in all cases and sometimes dominates its competitors, particularly when the regression function is quite complex. A real data set is also treated. While the main focus is on the case of a univariate covariate, simulations are also conducted in the bivariate case.
Type de document :
Article dans une revue
Computational Statistics and Data Analysis, Elsevier, 2015
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01108504
Contributeur : Isabelle Charlier <>
Soumis le : mercredi 13 janvier 2016 - 17:51:13
Dernière modification le : jeudi 11 janvier 2018 - 06:22:11
Document(s) archivé(s) le : vendredi 11 novembre 2016 - 05:04:20

Fichier

CPS15b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01108504, version 2

Collections

Citation

Isabelle Charlier, Davy Paindaveine, Jérôme Saracco. Conditional Quantile Estimation based on Optimal Quantization: from Theory to Practice. Computational Statistics and Data Analysis, Elsevier, 2015. 〈hal-01108504v2〉

Partager

Métriques

Consultations de la notice

420

Téléchargements de fichiers

73