Relative group sparsity for non-negative matrix factorization with application to on-the-fly audio source separation

Abstract : We consider dictionary-based signal decompositions with group sparsity, a variant of structured sparsity. We point out that the group sparsity-inducing constraint alone may not be sufficient in some cases when we know that some bigger groups or so-called supergroups cannot vanish completely. To deal with this problem we introduce the notion of relative group sparsity preventing the supergroups from vanishing. In this paper we formulate practical criteria and algorithms for relative group sparsity as applied to non-negative matrix factorization and investigate its potential benefit within the on-the-fly audio source separation framework we recently introduced. Experimental evaluation shows that the proposed relative group sparsity leads to performance improvement over group sparsity in both supervised and semi-supervised on-the-fly audio source separation settings.
Type de document :
Communication dans un congrès
Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'15), Apr 2015, Brisbane, Australia. 2015
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01120009
Contributeur : Alexey Ozerov <>
Soumis le : mercredi 30 décembre 2015 - 13:43:25
Dernière modification le : lundi 4 janvier 2016 - 14:42:08
Document(s) archivé(s) le : mardi 5 avril 2016 - 13:45:01

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01120009, version 2

Citation

Dalia El Badawy, Alexey Ozerov, Ngoc Q. K. Duong. Relative group sparsity for non-negative matrix factorization with application to on-the-fly audio source separation . Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'15), Apr 2015, Brisbane, Australia. 2015. 〈hal-01120009v2〉

Partager

Métriques

Consultations de la notice

23

Téléchargements de fichiers

183