Higher Order Variational Integrators: a polynomial approach

Abstract : We reconsider the variational derivation of symplectic partitioned Runge-Kutta schemes. Such type of variational integrators are of great importance since they integrate mechanical systems with high order accuracy while preserving the structural properties of these systems, like the symplectic form, the evolution of the momentum maps or the energy behaviour. Also they are easily applicable to optimal control problems based on mechanical systems as proposed in Ober-Bl\"obaum et al. [2011]. Following the same approach, we develop a family of variational integrators to which we refer as symplectic Galerkin schemes in contrast to symplectic partitioned Runge-Kutta. These two families of integrators are, in principle and by construction, different one from the other. Furthermore, the symplectic Galerkin family can as easily be applied in optimal control problems, for which Campos et al. [2012b] is a particular case.
Type de document :
Chapitre d'ouvrage
Advances in Differential Equations and Applications, pp.249-258, 2014, SEMA SIMAI Springer Series, 978-3-319-06952-4. 〈10.1007/978-3-319-06953-1_24〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01122917
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 4 mars 2015 - 18:25:07
Dernière modification le : mardi 29 mai 2018 - 12:51:02
Document(s) archivé(s) le : vendredi 5 juin 2015 - 11:20:24

Fichier

1307.6139v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Cédric M. Campos. Higher Order Variational Integrators: a polynomial approach. Advances in Differential Equations and Applications, pp.249-258, 2014, SEMA SIMAI Springer Series, 978-3-319-06952-4. 〈10.1007/978-3-319-06953-1_24〉. 〈hal-01122917〉

Partager

Métriques

Consultations de la notice

167

Téléchargements de fichiers

135