A projection method on measures sets

Abstract : We consider the problem of projecting a probability measure π on a set MN of Radon measures. The projection is defined as a solution of the following variational problem: inf µ∈M N h (µ − π) 2 2 , where h ∈ L 2 (Ω) is a kernel, Ω ⊂ R d and denotes the convolution operator. To motivate and illustrate our study, we show that this problem arises naturally in various practical image rendering problems such as stippling (representing an image with N dots) or continuous line drawing (representing an image with a continuous line). We provide a necessary and sufficient condition on the sequence (MN) N ∈N that ensures weak convergence of the projections (µ * N) N ∈N to π. We then provide a numerical algorithm to solve a discretized version of the problem and show several illustrations related to computer-assisted synthesis of artistic paintings/drawings.
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01133398
Contributeur : Nicolas Chauffert <>
Soumis le : jeudi 19 mars 2015 - 11:45:56
Dernière modification le : jeudi 1 février 2018 - 01:31:49
Document(s) archivé(s) le : lundi 17 avril 2017 - 18:33:01

Fichier

papier_projection.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01133398, version 1

Citation

Nicolas Chauffert, Philippe Ciuciu, Jonas Kahn, Pierre Weiss. A projection method on measures sets. 2015. 〈hal-01133398〉

Partager

Métriques

Consultations de la notice

405

Téléchargements de fichiers

325