Quantitative convergence towards a self similar profile in an age-structured renewal equation for subdiffusion

Hugues Berry 1, 2 Thomas Lepoutre 3, 4, 5 Álvaro Mateos González 6, 7, 1
1 BEAGLE - Artificial Evolution and Computational Biology
LBBE - Laboratoire de Biométrie et Biologie Evolutive - UMR 5558, Inria Grenoble - Rhône-Alpes, LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
3 DRACULA - Multi-scale modelling of cell dynamics : application to hematopoiesis
ICJ - Institut Camille Jordan [Villeurbanne], Inria Grenoble - Rhône-Alpes, CGPhiMC - Centre de génétique et de physiologie moléculaire et cellulaire
5 MMCS - Modélisation mathématique, calcul scientifique
ICJ - Institut Camille Jordan [Villeurbanne]
7 NUMED - Numerical Medicine
UMPA-ENSL - Unité de Mathématiques Pures et Appliquées, Inria Grenoble - Rhône-Alpes
Abstract : Continuous-time random walks are generalisations of random walks frequently used to account for the consistent observations that many molecules in living cells undergo anomalous diffusion, i.e. subdiffusion. Here, we describe the subdiffusive continuous-time random walk using age-structured partial differential equations with age renewal upon each walker jump, where the age of a walker is the time elapsed since its last jump. In the spatially-homogeneous (zero-dimensional) case, we follow the evolution in time of the age distribution. An approach inspired by relative entropy techniques allows us to obtain quantitative explicit rates for the convergence of the age distribution to a self-similar profile, which corresponds to convergence to a stationnary profile for the rescaled variables. An important difficulty arises from the fact that the equation in self-similar variables is not autonomous and we do not have a specific analyitcal solution. Therefore, in order to quantify the latter convergence, we estimate attraction to a time-dependent "pseudo-equilibrium", which in turn converges to the stationnary profile.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/hal-01136667
Contributor : Álvaro Mateos González <>
Submitted on : Friday, March 27, 2015 - 5:41:06 PM
Last modification on : Thursday, November 21, 2019 - 2:28:53 AM
Long-term archiving on: Tuesday, April 18, 2017 - 2:22:23 AM

Files

Berry-Lepoutre-Mateos.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01136667, version 1
  • ARXIV : 1503.08552

Citation

Hugues Berry, Thomas Lepoutre, Álvaro Mateos González. Quantitative convergence towards a self similar profile in an age-structured renewal equation for subdiffusion. Acta Applicandae Mathematicae, Springer Verlag, 2016, pp.15-45. ⟨hal-01136667⟩

Share

Metrics

Record views

708

Files downloads

344