Skip to Main content Skip to Navigation
Conference papers

Approche bayésienne non paramétrique pour la factorisation de matrice binaire à faible rang avec loi de puissance

Abstract : We introduce a low-rank Bayesian nonparametric (BNP) model for bipartite graphs. Recently, Caron (2012) proposed a BNP model where each node is given its own sociability parameter allowing to capture the power-law behavior of real world bipartite graphs. This model can be considered as a rank one nonnegative factorization of the adjacency matrix. Building on the compound random measures recently introduced by Griffin and Leisen (2014), we derive a rank p generalization of this model where each node is associated with a p-dimensional vector of sociability parameters accounting for several latent dimensions. While preserving the desired properties of interpretability, scalability and power-law behavior, our model is more flexible and provides better predictive performance as illustrated on several datasets.
Complete list of metadata

Cited literature [8 references]  Display  Hide  Download

https://hal.inria.fr/hal-01157151
Contributor : Adrien Todeschini <>
Submitted on : Friday, January 15, 2016 - 2:04:33 PM
Last modification on : Monday, December 14, 2020 - 5:20:05 PM

File

submission_209.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01157151, version 2

Collections

IMB | CNRS | INRIA

Citation

Adrien Todeschini, Francois Caron. Approche bayésienne non paramétrique pour la factorisation de matrice binaire à faible rang avec loi de puissance. 47èmes Journées de Statistique de la SFdS, Société Française de Statistique, Jun 2015, Lille, France. ⟨hal-01157151v2⟩

Share

Metrics

Record views

353

Files downloads

130