Data assimilation for linear parabolic equations: minimax projection method

Abstract : In this paper we propose a state estimation method for linear parabolic partial differential equations (PDE) that accounts for errors in the model, truncation, and observations. It is based on an extension of the Galerkin projection method. The extended method models projection coefficients, representing the state of the PDE in some basis, by means of a differential-algebraic equation (DAE). The original estimation problem for the PDE is then recast as a state estimation problem for the constructed DAE using a linear continuous minimax filter. We construct a numerical time integrator that preserves the monotonic decay of a nonstationary Lyapunov function along the solution. To conclude, we demonstrate the efficacy of the proposed method by applying it to the tracking of a discharged pollutant slick in a two-dimensional fluid.
Type de document :
Article dans une revue
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2015, 37 (3), pp.A1174-A1196. 〈http://epubs.siam.org/doi/abs/10.1137/13094709X〉. 〈10.1137/13094709X〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01174081
Contributeur : Nathalie Gaudechoux <>
Soumis le : mercredi 8 juillet 2015 - 11:46:19
Dernière modification le : mardi 17 avril 2018 - 11:34:39
Document(s) archivé(s) le : vendredi 9 octobre 2015 - 10:41:23

Fichier

Zhuk-SIAM-2015.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Sergiy Zhuk, Frank Jason, Isabelle Herlin, Robert Shorten. Data assimilation for linear parabolic equations: minimax projection method. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2015, 37 (3), pp.A1174-A1196. 〈http://epubs.siam.org/doi/abs/10.1137/13094709X〉. 〈10.1137/13094709X〉. 〈hal-01174081〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

105