An n-Dimensional Generalization of the Rhombus Tiling

Abstract : Several classic tilings, including rhombuses and dominoes, possess height functions which allow us to 1) prove ergodicity and polynomial mixing times for Markov chains based on local moves, 2) use coupling from the past to sample perfectly random tilings, 3) map the statistics of random tilings at large scales to physical models of random surfaces, and and 4) are related to the "arctic circle"' phenomenon.However, few examples are known for which this approach works in three or more dimensions.Here we show that the rhombus tiling can be generalized to n-dimensional tiles for any $n ≥ 3$. For each $n$, we show that a certain local move is ergodic, and conjecture that it has a mixing time of $O(L^{n+2} log L)$ on regions of size $L$. For $n=3$, the tiles are rhombohedra, and the local move consists of switching between two tilings of a rhombic dodecahedron.We use coupling from the past to sample random tilings of a large rhombic dodecahedron, and show that arctic regions exist in which the tiling is frozen into a fixed state.However, unlike the two-dimensional case in which the arctic region is an inscribed circle, here it seems to be octahedral.In addition, height fluctuations between the boundary of the region and the center appear to be constant rather than growing logarithmically.We conjecture that this is because the physics of the model is in a "smooth" phase where it is rigid at large scales, rather than a "rough" phase in which it is elastic.
Type de document :
Communication dans un congrès
Cori, Robert and Mazoyer, Jacques and Morvan, Michel and Mosseri, Rémy. Discrete Models: Combinatorics, Computation, and Geometry, DM-CCG 2001, 2001, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AA, Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG 2001), pp.23-42, 2001, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01182973
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 6 août 2015 - 11:46:46
Dernière modification le : mardi 7 mars 2017 - 15:00:04
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:00:14

Fichier

dmAA0102.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01182973, version 1

Collections

Citation

Joakim Linde, Cristopher Moore, Mats G. Nordahl. An n-Dimensional Generalization of the Rhombus Tiling. Cori, Robert and Mazoyer, Jacques and Morvan, Michel and Mosseri, Rémy. Discrete Models: Combinatorics, Computation, and Geometry, DM-CCG 2001, 2001, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AA, Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG 2001), pp.23-42, 2001, DMTCS Proceedings. 〈hal-01182973〉

Partager

Métriques

Consultations de la notice

188

Téléchargements de fichiers

130